En Actualizacion

Estaremos en listos en:

  • 0daysD
  • 0hoursH
  • 0minutesM
  • 0secondsS
Error text Subscribe

Grado 10

einsten 1

En la matemática y en la física, el error es la diferencia entre un valor calculado y el valor real. En este sentido, pueden haberse cometido distintos tipos de errores: un error experimental surge ante la imposibilidad de controlar la influencia de todas las variables; un error de cálculo es una equivocación al concretar una operación matemática; un error de aproximación acontece al expresar una aproximación más sencilla de una magnitud numérica en lugar de la magnitud real; por último, un error de medición es una inexactitud que se produce al comparar una magnitud con su patrón de medida

2- errores entre la medida real:
Toda medida debe de ir seguida por la unidad, obligatoriamente del Sistema Internacional de Unidades de medida.
Cuando un físico mide algo debe tener gran cuidado para no producir una perturbación en el sistema que está bajo observación. Por ejemplo, cuando medimos la temperatura de un cuerpo, lo ponemos en contacto con un termómetro. Pero cuando los ponemos juntos, algo de energía o “calor” se intercambia entre el cuerpo y el termómetro, dando como resultado un pequeño cambio en la temperatura del cuerpo que deseamos medir. Así, el instrumento de medida afecta de algún modo a la cantidad que deseábamos medir
Además, todas las medidas está afectadas en algún grado por un error experimental debido a las imperfecciones inevitables del instrumento de medida, o las limitaciones impuestas por nuestros sentidos que deben de registrar la información.
1.-Todo resultado experimental o medida hecha en el laboratorio debe de ir acompañada del valor estimado del error de la medida y a continuación, las unidades empleadas.

Descargar: Sistemas_de_Unidades

DESCARGAR: Manejo de Errores

Grado 11

einsten 1

Desde la antigua Grecia se conocían los fenómenos magnéticos y eléctricos pero no es hasta inicios del siglo XVII donde se comienza a realizar experimentos y a llegar a conclusiones científicas de estos fenómenos.1 Durante estos dos siglos, XVII y XVIII, grandes hombres de ciencia como William GilbertOtto von GuerickeStephen Gray,Benjamin FranklinAlessandro Volta entre otros estuvieron investigando estos dos fenómenos de manera separada y llegando a conclusiones coherentes con sus experimentos.

A principios del siglo XIX Hans Christian Ørsted encontró evidencia empírica de que los fenómenos magnéticos y eléctricos estaban relacionados. De ahí es que los trabajos de físicos como André-Marie AmpèreWilliam SturgeonJoseph HenryGeorg Simon OhmMichael Faraday en ese siglo, son unificados porJames Clerk Maxwell en 1861 con un conjunto de ecuaciones que describían ambos fenómenos como uno solo, como un fenómeno electromagnético.1

Las ahora llamadas ecuaciones de Maxwell demostraban que los campos eléctricos y los campos magnéticos eran manifestaciones de un solo campo electromagnético. Además describía la naturaleza ondulatoria de la luz, mostrándola como una onda electromagnética.2Con una sola teoría consistente que describía estos dos fenómenos antes separados, los físicos pudieron realizar varios experimentos prodigiosos e inventos muy útiles como la bombilla eléctrica por Thomas Alva Edison o el generador de corriente alterna por Nikola Tesla.3 El éxito predicitivo de la teoría de Maxwell y la búsqueda de una interpretación coherente de sus implicaciones, fue lo que llevó aAlbert Einstein a formular su teoría de la relatividad que se apoyaba en algunos resultados previos de Hendrik Antoon Lorentz y Henri Poincaré.

En la primera mitad del siglo XX, con el advenimiento de la mecánica cuántica, el electromagnetismo tenía que mejorar su formulación con el objetivo de que fuera coherente con la nueva teoría. Esto se logró en la década de 1940 cuando se completó una teoría cuántica electromagnética o mejor conocida como electrodinámica cuántica.

DESCARGAR: Electricidad y magnetismo.

Contacto

Our Location

Contact Form

Send